

Characterization of complex and "microstructured" media using elastic guided waves

Nicolas Bochud

Université Paris-Est Créteil, CNRS (UMR 8208), Laboratoire Modélisation et Simulation Multi Echelle, Biomechanics group

Workshop on elastodynamics of microstructured media, École des Ponts – ParisTech – Champs sur Marne

Motivation

Continuum modeling of frequency dependent acoustic beam in hexagonal lattices

Identification of the constitutive law of strain gradient elasticity models

$$\left(\begin{array}{c} \frac{p}{\alpha}\\ \frac{\sigma}{\alpha}\\ \frac{\sigma}{\alpha}\\ \frac{\tau}{2}\\ \frac{\tau}{2}\end{array}\right) = \left(\begin{array}{ccc} \rho_{J}^{I} & 0 & 0 & 0\\ 0 & J & 0 & 0\\ 0 & 0 & 0 & C\\ 0 & 0 & 0 & A\\ 0 & 0 & 0 & A\\ \end{array}\right) \left(\begin{array}{c} \frac{v}{\nabla v}\\ \frac{\sigma}{\alpha}\\ \frac{\sigma}{\alpha}\\ \frac{\sigma}{2}\end{array}\right)$$

[1] Auffray et al, Int J Solids Struct, 2015; [2] Rosi and Auffray, Eur J Mech A-Solid, 2019.

Motivation

Continuum modeling of frequency dependent acoustic beam in hexagonal lattices

Identification of the constitutive law of strain gradient elasticity models

$$\left(\begin{array}{c} \frac{p}{q} \\ \stackrel{\sim}{\sigma} \\ \stackrel{\sim}{\tau} \\ \stackrel{\sim}{\tau} \\ \frac{\tau}{\tau} \end{array}\right) = \left(\begin{array}{ccc} \rho \stackrel{I}{,} & 0 & 0 & 0 \\ 0 & \stackrel{J}{,} & 0 & 0 \\ 0 & 0 & C & 0 \\ 0 & 0 & 0 & A \\ \end{array}\right) \left(\begin{array}{c} \frac{v}{\nabla v} \\ \stackrel{\sim}{\tau} \\ \stackrel{\sim}{\tau} \\ \frac{v}{\tau} \\ \frac{v}{\tau} \end{array}\right)$$

- Identification of the model parameters (a_S, a_P, a_D, J_P, J_S)?
- Influence of the unit cell characteristics (a, th)?

[1] Auffray et al, Int J Solids Struct, 2015; [2] Rosi and Auffray, Eur J Mech A-Solid, 2019.

Motivation

Continuum modeling of frequency dependent acoustic beam in hexagonal lattices

Identification of the constitutive law of strain gradient elasticity models

$$\left(\begin{array}{c} \frac{p}{q} \\ \alpha \\ \alpha \\ \tau \\ \tau \\ \tau \end{array}\right) = \left(\begin{array}{cccc} \rho \stackrel{I}{\downarrow} & 0 & 0 & 0 \\ 0 & \stackrel{J}{\searrow} & 0 & 0 \\ 0 & 0 & C & 0 \\ 0 & 0 & 0 & A \\ \end{array}\right) \left(\begin{array}{c} \frac{v}{\nabla v} \\ \frac{v}{\gamma} \\ \frac{$$

- Identification of the model parameters (a_S, a_P, a_D, J_P, J_S)?
- Influence of the unit cell characteristics (a, th)?

Can we take advantage of guided waves measurements to retreive such parameters ?

[1] Auffray et al, Int J Solids Struct, 2015; [2] Rosi and Auffray, Eur J Mech A-Solid, 2019.

NI	Deelerre	
IN .	DOCHUG	

Elastic guided waves

Elastic guided waves in media with surface structures

Guided waves focusing using metamaterials

Guided waves focusing using metamaterials

Elastic guided waves in media with surface structures

Rayleigh waves conversion using metasurfaces

[1] Yan et al, Appl Phys Lett, 2013; [2] Colombi et al, Sci Rep, 2017.

Elastic guided waves

Elastic guided waves in media with surface structures

Guided waves focusing using metamaterials

- Little work has been done using micro-architectured media through-the-thickness
- Can we use recent experimental advances as a starting point ?

[1] Yan et al, Appl Phys Lett, 2013; [2] Colombi et al, Sci Rep, 2017.

Elastic guided waves in media with surface structures

Rayleigh waves conversion using metasurfaces

- Little work has been done using micro-architectured media through-the-thickness
- Can we use recent experimental advances as a starting point ?

Elastic guided waves in media with surface structures

Rayleigh waves conversion using metasurfaces

- Little work has been done using micro-architectured media through-the-thickness
- Can we use recent experimental advances as a starting point ?

Guided waves focusing using metamaterials

Elastic guided waves in media with surface structures

Rayleigh waves conversion using metasurfaces

- Little work has been done using micro-architectured media through-the-thickness
- Can we use recent experimental advances as a starting point ?

- Guided wave measurements
- Waveguide models
- Inverse problem

Elastic guided waves in a homogeneous and isotropic solid

• Modes conversion at the interfaces ($\lambda \sim h$)

Elastic guided waves in a homogeneous and isotropic solid

• Modes conversion at the interfaces ($\lambda \sim h$)

• Rayleigh-Lamb equation

$$\frac{\omega^4}{V_T{}^4} = 4k^2q^2\left[1 - \frac{p\tan{(ph+\alpha)}}{q\tan{(qh+\alpha)}}\right], \text{ avec } p^2 = \frac{\omega^2}{V_L{}^2} - k^2, \ q^2 = \frac{\omega^2}{V_T{}^2} - k^2, \ \alpha = \{0, \pi/2\}$$

Elastic guided waves in a homogeneous and isotropic solid

• Modes conversion at the interfaces ($\lambda \sim h$)

• Rayleigh-Lamb equation

$$\frac{\omega^4}{V_T{}^4} = 4k^2q^2\left[1 - \frac{p\tan{(ph+\alpha)}}{q\tan{(qh+\alpha)}}\right], \text{ avec } p^2 = \frac{\omega^2}{V_L{}^2} - k^2, \ q^2 = \frac{\omega^2}{V_T{}^2} - k^2, \ \alpha = \{0, \pi/2\}$$

• Solutions: dispersion curves f(k)

Elastic guided waves in a homogeneous and isotropic solid

• Modes conversion at the interfaces ($\lambda \sim h$)

• Rayleigh-Lamb equation

$$\frac{\omega^4}{V_T{}^4} = 4k^2q^2\left[1 - \frac{p\tan{(ph+\alpha)}}{q\tan{(qh+\alpha)}}\right], \text{ avec } p^2 = \frac{\omega^2}{V_L{}^2} - k^2, \ q^2 = \frac{\omega^2}{V_T{}^2} - k^2, \ \alpha = \{0, \pi/2\}$$

• Solutions: dispersion curves f(k)

Elastic guided waves in a homogeneous and isotropic solid

• Modes conversion at the interfaces ($\lambda \sim h$)

• Rayleigh-Lamb equation

$$\frac{\omega^4}{V_T{}^4} = 4k^2q^2\left[1 - \frac{p\tan{(ph+\alpha)}}{q\tan{(qh+\alpha)}}\right], \text{ avec } p^2 = \frac{\omega^2}{V_L{}^2} - k^2, \ q^2 = \frac{\omega^2}{V_T{}^2} - k^2, \ \alpha = \{0, \pi/2\}$$

• Solutions: dispersion curves f(k)

Elastic guided waves in a microstructured solid

• Modes conversion at the interfaces ($\lambda \sim h$)

• Rayleigh-Lamb equation

$$\frac{\omega^4}{V_T{}^4} = 4k^2q^2\left[1 - \frac{p\tan{(ph+\alpha)}}{q\tan{(qh+\alpha)}}\right], \text{ avec } p^2 = \frac{\omega^2}{V_L{}^2} - k^2, \ q^2 = \frac{\omega^2}{V_T{}^2} - k^2, \ \alpha = \{0, \pi/2\}$$

• Solutions: dispersion curves f(k)

 $+ \{a_{11}, a_{12}, a_{22}, a_{23}, a_{44}, J_P, J_S\}$

[1] Royer and Dieulesaint, Elastic waves in solids I: Free and guided propagation, 1996.

N. Bochud

Elastic guided waves

Guided waves characterization of complex media with "microstructures"

[1] Biomedical Imaging Laboratory, Paris; [2] Institut Langevin, Paris; [3] Institute of Materials Physics and Technology (TUHH).

Guided waves characterization of complex media with "microstructures"

[1] Biomedical Imaging Laboratory, Paris; [2] Institut Langevin, Paris; [3] Institute of Materials Physics and Technology (TUHH).

Guided waves characterization of complex media with "microstructures"

[1] Biomedical Imaging Laboratory, Paris; [2] Institut Langevin, Paris; [3] Institute of Materials Physics and Technology (TUHH).

Guided waves characterization of complex media with "microstructures"

[1] Biomedical Imaging Laboratory, Paris; [2] Institut Langevin, Paris; [3] Institute of Materials Physics and Technology (TUHH).

Guided waves characterization of complex media with "microstructures"

[1] Biomedical Imaging Laboratory, Paris; [2] Institut Langevin, Paris; [3] Institute of Materials Physics and Technology (TUHH).

Guided waves characterization of complex media with "microstructures"

[1] Biomedical Imaging Laboratory, Paris; [2] Institut Langevin, Paris; [3] Institute of Materials Physics and Technology (TUHH).

Guided waves characterization of complex media with "microstructures"

[1] Biomedical Imaging Laboratory, Paris; [2] Institut Langevin, Paris; [3] Institute of Materials Physics and Technology (TUHH).

Guided waves characterization of complex media with "microstructures"

[1] Biomedical Imaging Laboratory, Paris; [2] Institut Langevin, Paris; [3] Institute of Materials Physics and Technology (TUHH).

Guided waves characterization of complex media with "microstructures"

[1] Biomedical Imaging Laboratory, Paris; [2] Institut Langevin, Paris; [3] Institute of Materials Physics and Technology (TUHH).

I. Multi-elements probe driven by a programmable multi-channel electronics

[1] Minonzio et al, J Acoust Soc Am, 2010; [2] Alleyne and Cawley, J Acoust Soc Am, 1991.

I. Multi-elements probe driven by a programmable multi-channel electronics

[1] Minonzio et al, J Acoust Soc Am, 2010; [2] Alleyne and Cawley, J Acoust Soc Am, 1991.

I. Multi-elements probe driven by a programmable multi-channel electronics

[1] Minonzio et al, J Acoust Soc Am, 2010; [2] Alleyne and Cawley, J Acoust Soc Am, 1991.

I. Multi-elements probe driven by a programmable multi-channel electronics

[1] Minonzio et al, J Acoust Soc Am, 2010; [2] Alleyne and Cawley, J Acoust Soc Am, 1991.

I. Multi-elements probe driven by a programmable multi-channel electronics

[1] Minonzio et al, J Acoust Soc Am, 2010; [2] Alleyne and Cawley, J Acoust Soc Am, 1991.

I. Multi-elements probe driven by a programmable multi-channel electronics

[1] Minonzio et al, J Acoust Soc Am, 2010; [2] Alleyne and Cawley, J Acoust Soc Am, 1991.

N. Bochud

Elastic guided waves

I. Multi-elements probe driven by a programmable multi-channel electronics

[1] Minonzio et al, J Acoust Soc Am, 2010; [2] Alleyne and Cawley, J Acoust Soc Am, 1991.

II. Non-contact laser ultrasound measurements

[1] Clorennec et al, Appl Phys Lett, 2006; [2] Ces et al., J Acoust Soc Am, 2012.

II. Non-contact laser ultrasound measurements

[1] Clorennec et al, Appl Phys Lett, 2006; [2] Ces et al., J Acoust Soc Am, 2012.

II. Non-contact laser ultrasound measurements

[1] Clorennec et al, Appl Phys Lett, 2006; [2] Ces et al., J Acoust Soc Am, 2012.

II. Non-contact laser ultrasound measurements

[1] Clorennec et al, Appl Phys Lett, 2006; [2] Ces et al., J Acoust Soc Am, 2012.

II. Non-contact laser ultrasound measurements

[1] Clorennec et al, Appl Phys Lett, 2006; [2] Ces et al., J Acoust Soc Am, 2012.

N. Bochud

Elastic guided waves

II. Non-contact laser ultrasound measurements

[1] Clorennec et al, Appl Phys Lett, 2006; [2] Ces et al., J Acoust Soc Am, 2012.

N. Bochud

Elastic guided waves

N. Bochud	Elastic guided waves	October 18th, 2019 7 / 12
-----------	----------------------	---------------------------

N. Bochud	Elastic guided waves	October 18th, 2019 7 / 12
-----------	----------------------	---------------------------

Multi-parametric inverse problem

Maximization of $F(\theta)$ using genetic algorithms: Example for a silicon wafer

[1] Goldberg, Genetic algorithms in search, optimization and machine learning, 1989; [2] Bochud et al, J Acoust Soc Am, 2018.

	-				
	Ro	\sim	5		
14.	00	u		u	

	-				
	Ro	\sim	5		
14.	00	u		u	

	_			
	- 8	00	h	110
1.1	. ບ			

N. Bochud	Elastic guided waves	October 18th, 2019	9/12

[1] Bochud et al, Phys Med Biol, 2016; [2] Bochud et al, NDT&E Int, 2019 (in prep.); [3] Thelen et al, 2019 (in prep.).

[1] Bochud et al, Phys Med Biol, 2016; [2] Bochud et al, NDT&E Int, 2019 (in prep.); [3] Thelen et al, 2019 (in prep.).

N. Bochud

Elastic guided waves

[1] Bochud et al, Phys Med Biol, 2016; [2] Bochud et al, NDT&E Int, 2019 (in prep.); [3] Thelen et al, 2019 (in prep.).

N. Bochud

Elastic guided waves

[1] Bochud et al, Phys Med Biol, 2016; [2] Bochud et al, NDT&E Int, 2019 (in prep.); [3] Thelen et al, 2019 (in prep.).

Preliminary results on microstructured plates

Conclusion

- Two experimental approaches for measuring guided waves in complex media:
 - A multi-element approach using a programmable multi-channel electronics
 - + Real-time measurement ($f \in 0-15$ MHz)) mm-thick samples
 - + Enhanced dispersion curves \Rightarrow SVD-based processing
 - Contact measurement eq non-metallic or complex geometries
 - A non-contact laser ultrasonics approach:
 - + Extremely broadband measurement (f \in 0 100 MHz) μ m-thick samples
 - + Dispersion curves and ZGV Lamb modes
 - Complex setup

Associated models and inverse problem procedures to infer model parameters

o Examples: cortical bone, bonded layers, nanoporous membranes

Preliminary results on microstructured plates using strain gradient elasticity

- Extend the study to 3D (e.g., gyroids) to mimic biological substitutes
- o Design microstructured samples using additive manufacturing
- Measurements using ultrasound or vibro-acoustics

Thank you for your attention

N. Bochud