

Invariant-based optimization methods for architectured structures

IRP Coss&Vita, M&MoCS, F2M

Boris Desmorat ¹ Massimo Cuomo ² Leopoldo Greco ²

¹Institut Jean Le Rond d'Alembert, Sorbonne Université,

²Department of Civil and Environmental Engineering, Universitá degli Studi di Catania

October 17th - Kick-off meeting

COMECH	Introduction	Classical elasticity	Architectured
00000	0000	000000000000000000000000000000000000000	000000000

COMECH

Introduction

Optimization of anisotropic standard structures

Optimization of architectured structures

COMECH	Introduction	Classical elasticity	Architectured
0000	0000	000000000000000000000000000000000000000	000000000

COMECH

Introduction

Optimization of anisotropic standard structures

Optimization of architectured structures

COMPUTATIONAL MECHANICS OF GENERALIZED CONTINUA (COMECH)

Main topics: (3 out of 4 are new)

- Numerical models for higher order continua based on Isogeometric interpolations
- Material and structural optimization algorithms
- Direct simulation of wave propagation in meta materials
- Numerical design and simulation of active elements composed by complex materials

Coordinators:

- **F2M:** Boris Desmorat
- M&MoCS: Massimo Cuomo, Leopoldo Greco

PAST ACTIONS (2015-2018)

• Workshops

- Workshop on topic COMECH and NLS at Catania (Sicily), 29-31th of October 2015
- Workshop Regularised models of brittle fracture at Université Pierre et Marie Curie (Paris), 2nd of May 2016

• Exchange of researcher

• 2 weeks of Exchange were funded between France and Italy for the former COMECH research group

NATIONAL CONTRACTS (ELADYN / COMECH)

• **ANR MoMaP** (2019-2023):

Mesure et Optimisation des Matériaux Architecturés Périodiques Coordinator: M. Francois (GeM, Université de Nantes)

• **ANR Max-Oasis** (2020-2024):

Matériaux Architecturés eXotiques, Ondes, AniSotropie, InStabilités Coordinator: N. Auffray (MSME, Marne-la-Vallée)

COMPUTATIONAL MECHANICS OF GENERALIZED CONTINUA (COMECH)

Main topics:

- Numerical models for higher order continua based on Isogeometric interpolations
- Material and structural optimization algorithms
- Direct simulation of wave propagation in meta materials
- Numerical design and simulation of active elements composed by complex materials

Coordinators:

- **F2M:** Boris Desmorat
- M&MoCS: Massimo Cuomo, Leopoldo Greco

COMECH	Introduction	Classical elasticity	Architectured
00000	0000	000000000000000000000000000000000000000	000000000

COMECH

Introduction

Optimization of anisotropic standard structures

Optimization of architectured structures

STUDY OF CLASSICAL AND GENERALIZED ELASTICITY : PHYSICAL MOTIVATIONS

The constitutive law is an image of the microstructure of the material.

Connection with other topics

- UP : use of homogenization methods,...
- NLS : simulation of active elements, ...
- **ELADYN**: Simulation of wave propagation, ...

Optimal design

. . .

- Response to specifications;
- Achieving non standard properties;
- Controlling wave propagation;

 $\mathcal{M}(P)$

COMECH Int	troduction	Classical elasticity	Architectured
00000 00	00	0000000000000000	000000000

Optimal design using invariants

2D anisotropic Elasticity, small strains, small displacements

Structural problem

\$

Equivalent behavior Invariant parametrization

\$

Micro structure level Geometrical parametrization

	COMECH	Introduction	Classical elasticity	Architectured
00000 0000 0000000000 000000000000000	00000	0000	0000000000000000	000000000

OPTIMAL DESIGN USING INVARIANTS

2D anisotropic Elasticity, small strains, small displacements

Structural problem

\$

Equivalent behavior Invariant parametrization

\$

Micro structure level Geometrical parametrization

Structural optimization

Objective function : Mass, Buckling, Energy *Optimization parameters* : Invariants

Optimal design using invariants

2D anisotropic Elasticity, small strains, small displacements

Structural problem

\$

Equivalent behavior

Invariant parametrization

\$

Micro structure level Geometrical parametrization

Structural optimization

Objective function : Mass, Buckling, Energy *Optimization parameters* : Invariants

Optimal design of achitectured materials

Objective function : f(Invariants) Optimization parameters : Geometry

Objectives of the talk

Aims of the talk

- introduce what is an invariant-based optimization method
- extend the approach to generalized continuum elasticity

The 2D setting

- complex enough to produce non trivial results
- simple enough to handle explicit computations
- construct situations that can be extended to the 3D problem.

COMECH	Introduction	Classical elasticity	Architectured
00000	0000	•000000000000000	000000000

COMECH

Introduction

Optimization of anisotropic standard structures

Optimization of architectured structures

COMECH Int	itroduction	Classical elasticity	Architectured
00000 00	000	000000000000000000000000000000000000000	000000000

The elasticity tensor

Hooke's law

Linear relation between the stress tensor $\sigma \in S^2(\mathbb{R}^2)$ and the strain tensor $\varepsilon \in S^2(\mathbb{R}^2)$:

 $\sigma=\mathbb{C}:\varepsilon$

Properties

 \mathbb{C} is an element of the vector space \mathbb{E} la := $S^2(S^2(\mathbb{R}^2))$; \mathbb{C} is positive definite :

 $\forall \varepsilon \neq 0, \quad \varepsilon : \mathbb{C} : \varepsilon > 0$

An elastic material: A O(2) -orbit

O(2)-action

O(2) acts on Ela through standard \star defined by :

 $\star: \mathcal{O}(2) \times \mathbb{E} la \to \mathbb{E} la$ $(\mathcal{Q}, \mathbb{C}) \mapsto \mathcal{Q} \star \mathbb{C} := Q_{ip} Q_{jq} Q_{kr} Q_{ls} C_{pqrs}$

Orbit

The set of tensors of \mathbb{E} la O(2)-conjugate to \mathbb{C} constitutes its O(2)-orbit :

$$\operatorname{Orb}(\mathbb{C}) := \left\{ \overline{\mathbb{C}} = \mathbf{Q} \star \mathbb{C} \mid \mathbf{Q} \in \mathcal{O}(2) \right\}.$$

The orbits space is the quotient space $\mathbb{E}la/O(2)$.

COMECH	Introduction	Classical elasticity	Architectured
00000	0000	000000000000000000000000000000000000000	000000000

PARAMETRIZATION OF 4TH ORDER ELASTICITY TENSOR [VERCHERY 1979]

$C_{1111} =$	$T_0 + 2T_1$	$+R_0\cos4\Phi_0$	$+4R_1\cos 2\Phi_1$
$C_{1112} =$		$R_0 \sin 4\Phi_0$	$+2R_1\sin 2\Phi_1$
$C_{1122} =$	$-T_0 + 2T_1$	$-R_0\cos4\Phi_0$	
$C_{1212} =$	T_0	$-R_0\cos4\Phi_0$	
$C_{1222} =$		$-R_0\sin 4\Phi_0$	$+2R_1\sin 2\Phi_1$
$C_{2222} =$	$T_0 + 2T_1$	$+R_0\cos4\Phi_0$	$-4R_1\cos 2\Phi_1$

$$T_{0} = \frac{1}{8} (C_{1111} - 2C_{1122} + 4C_{1212} + C_{2222})$$

$$T_{1} = \frac{1}{8} (C_{1111} + 2C_{1122} + C_{2222})$$

$$R_{0}e^{4i\Phi_{0}} = \frac{1}{8} [C_{1111} - 2C_{1122} - 4C_{1212} + C_{2222} + 4i(C_{1112} - C_{1222})]$$

$$R_{1}e^{2i\Phi_{1}} = \frac{1}{8} [C_{1111} - C_{2222} + 2i(C_{1112} + C_{1222})]$$

	-	
00000 0000 0000000000000000000000000000	0000000	000000000

Transformation of a 4th order elasticity tensor

$$\mathbf{R}(\theta) : \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \qquad \qquad \mathbf{P}(\underline{\mathbf{e}}_1) : \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\mathbb{C} = (T_0, T_1, R_0 e^{4i\Phi_0}, R_1 e^{2i\Phi_1})$$

$$R(\theta) \star \mathbb{C} = (T_0, T_1, R_0 e^{4i(\Phi_0 + \theta)}, R_1 e^{2i(\Phi_1 + \theta)})$$

$$\mathbf{P}(\underline{\mathbf{e}}_1) \star \mathbb{C} = (T_0, T_1, R_0 e^{4i\Phi_0}, R_1 e^{-2i\Phi_1})$$

COMECH I	ntroduction	Classical elasticity	Architectured
00000 0	0000	000000000000000000000000000000000000000	000000000

2D ELASTICITY TENSOR INVARIANTS

O(2)-integrity basis of \mathbb{E} la

The following quantities

 $I_1 = T_1 \qquad J_1 = T_0 \qquad I_2 = R_1^2 \qquad J_2 = R_0^2 \qquad I_3 = R_0 R_1^2 \cos 4(\varPhi_0 - \varPhi_1)$

• Constitute an integrity basis for the O(2)-action;

• The algebra $\mathbb{R}[\mathbb{E}la]^{O(2)}$ is free.

BOUNDS ON THE POLAR INVARIANTS

- The positive definiteness of $\mathbb C$ can be expressed in terms of bounds on its polar invariants
- It can be shown that the positive definiteness reduces to the following

$$\begin{split} T_0 &- |R_0| > 0, \\ T_1(T_0^2 - R_0^2) - 2R_1^2 \left[T_0 - R_0 \cos 4(\varPhi_0 - \varPhi_1) \right] > 0 \end{split}$$

• The above conditions $\Rightarrow T_0 > 0, T_1 > 0.$

	of assical clasticity	AICHIGCGUIEU
00000 00000	000000000000000000000000000000000000000	00000000

Polar parameters of the inverse tensor

• The polar components of $\mathbb{S} = \mathbb{C}^{-1}$, denoted by the lower-case letters t_0, t_1, r_0, r_1 and $\varphi_0 - \varphi_1$, are:

$$\begin{split} t_0 &= \frac{2}{\Delta} \left(T_0 T_1 - R_1^2 \right), \\ t_1 &= \frac{1}{2\Delta} \left(T_0^2 - R_0^2 \right), \\ r_0 e^{4i\varphi_0} &= \frac{2}{\Delta} \left[(R_1 e^{2i\varphi_1})^2 - T_1 R_0 e^{4i\varphi_0} \right], \\ r_1 e^{2i\varphi_1} &= \frac{1}{\Delta} \left[R_0 e^{4i\varphi_0} R_1 e^{-2i\varphi_1} - T_0 R_1 e^{2i\varphi_1} \right] \end{split}$$

• Δ is an invariant positive quantity, defined by

$$\Delta = 8T_1 \left(T_0^2 - R_0^2 \right) - 16R_1^2 \left[T_0 - R_0 \cos 4 \left(\Phi_0 - \Phi_1 \right) \right]$$

• An important result:

$$R_0 = 0 \Leftrightarrow r_0 = 0.$$

COMECH	Introduction	Classical elasticity	Architectured
00000	0000	00000000000000000	000000000

R_0 Special-Orthotropy

- $R_0 = 0$ identifies the so-called $R_0 orthotropy$
- With $R_0 = 0$, we get

$C_{1111} =$	$T_0 + 2T_1$	$+4R_1\cos 2\Phi_1$
$\mathrm{C}_{1112}{=}$		$+2R_1\sin 2\Phi_1$
$C_{1122} =$	$-T_0 + 2T_1$	
$C_{1212} =$	T_0	
$C_{1222} =$		$+2R_1\sin 2\Phi_1$
$C_{2222} =$	$T_0 + 2T_1$	$-4R_1\cos 2\Phi_1$

• Two components are isotropic, the others rotates like those of a 2nd order tensor.

COMECH	Introduction	Classical elasticity	Architectured
00000	0000	000000000●0000000	000000000

- Because $R_0 = 0 \Leftrightarrow r_0 = 0$, the dual case exists too: r_0 -orthotropy.
- It concerns the compliance tensor \mathbb{S} . In such a case, it can be shown that

$$R_0 = \frac{R_1^2}{T_1}$$

• The invariance of S_{1212} implies that of G_{12} :

$$G_{12} = \frac{1}{4S_{1212}} = \frac{1}{4t_0}.$$

• This is the special orthotropy typical of paper (Vannucci, J Elas, 2010)

	COMECH	Introduction	Classical elasticity	Architectured
00000 00000000000000000000000000000000	00000	0000	0000000000000000	000000000

Abridged laminate mechanics

	ed
00000 0000 0000 00000 000000 000000 0000	>

ABRIDGED LAMINATE MECHANICS

00000 0000 000000000000000000000000000	COMECH	Introduction	Classical elasticity	Architectured
	00000	0000	000000000000000000000000000000000000000	000000000

The stiffness tensors

$$\begin{split} \mathbb{A} &\to \begin{cases} T_0^A = T_0 \\ T_1^A = T_1 \\ R_0^A e^{4i\Phi_0^A} = R_0 e^{4i\Phi_0}(\xi_1 + i\xi_3) \\ R_1^A e^{2i\Phi_1^A} = R_1 e^{2i\Phi_1}(\xi_2 + i\xi_4) \end{cases} \\ \mathbb{B} &\to \begin{cases} T_0^B = 0 \\ T_1^B = 0 \\ R_0^B e^{4i\Phi_0^B} = R_0 e^{4i\Phi_0}(\xi_5 + i\xi_7) \\ R_1^B e^{2i\Phi_1^B} = R_1 e^{2i\Phi_1}(\xi_6 + i\xi_8) \end{cases} \\ \mathbb{D} &\to \begin{cases} T_0^D = T_0 \\ T_1^D = T_1 \\ R_0^D e^{4i\Phi_0^D} = R_0 e^{4i\Phi_0}(\xi_9 + i\xi_{11}) \\ R_1^D e^{2i\Phi_1^D} = R_1 e^{2i\Phi_1}(\xi_{10} + i\xi_{12}) \end{cases} \end{split}$$

COMECH	Introduction	Classical elasticity	Architectured
00000	0000	000000000000000000000000000000000000000	000000000

The stiffness tensors

$$\begin{split} \mathbb{A} &\to \begin{cases} T_0^A = T_0 \\ T_1^A = T_1 \\ R_0^A e^{i \phi_0^A} = R_0 e^{i \phi_0} (\xi_1 + i\xi_3) \\ R_1^A e^{2i \phi_1^A} = R_1 e^{2i \phi_1} (\xi_2 + i\xi_4) \end{cases} \\ \mathbb{B} &\to \begin{cases} T_0^B = 0 \\ T_1^B = 0 \\ R_0^B e^{i \phi_0^B} = R_0 e^{4i \phi_0} (\xi_5 + i\xi_7) \\ R_1^B e^{2i \phi_1^B} = R_1 e^{2i \phi_1} (\xi_6 + i\xi_8) \end{cases} \\ \mathbb{D} &\to \begin{cases} T_0^D = T_0 \\ T_1^D = T_1 \\ R_0^D e^{i \phi_0^D} = R_0 e^{4i \phi_0} (\xi_9 + i\xi_{11}) \\ R_1^D e^{2i \phi_1^D} = R_1 e^{2i \phi_1} (\xi_{10} + i\xi_{12}) \end{cases} \end{split}$$

Lamination parameters

$$\begin{cases} \xi_1 + i\xi_3 = \frac{1}{n} \sum_{j=1}^n e^{4i\delta_j} \\ \xi_2 + i\xi_4 = \frac{1}{n} \sum_{j=1}^n e^{2i\delta_j} \end{cases}$$

$$\begin{cases} \xi_5 + i\xi_7 = \frac{1}{n^2} \sum_{j=1}^n b_j \ e^{4i\delta_j} \\ \xi_6 + i\xi_8 = \frac{1}{n^2} \sum_{j=1}^n b_j \ e^{2i\delta_j} \end{cases}$$

$$\xi_{9} + i\xi_{11} = \frac{1}{n^3} \sum_{j=1}^{n} d_j \ e^{4i\delta_j}$$
$$\xi_{10} + i\xi_{12} = \frac{1}{n^3} \sum_{j=1}^{n} d_j \ e^{2i\delta_j}$$

COMECH	Introduction	Classical elasticity	Architectured
00000	0000	00000000000000000	000000000

The stiffness tensors

$$\begin{split} \mathbb{A} \to \begin{cases} T_0^A = T_0 \\ T_1^A = T_1 \\ R_0^A e^{4i\Phi_0^A} = R_0 e^{4i\Phi_0} (\xi_1 + i\xi_3) \\ R_1^A e^{2i\Phi_1^A} = R_1 e^{2i\Phi_1} (\xi_2 + i\xi_4) \end{cases} \\ \mathbb{B} \to \begin{cases} T_0^B = 0 \\ T_1^B = 0 \\ R_0^B e^{4i\Phi_0^B} = R_0 e^{4i\Phi_0} (\xi_5 + i\xi_7) \\ R_1^B e^{2i\Phi_1^B} = R_1 e^{2i\Phi_1} (\xi_6 + i\xi_8) \end{cases} \\ \mathbb{D} \to \begin{cases} T_0^D = T_0 \\ T_1^D = T_1 \\ R_0^D e^{4i\Phi_0^D} = R_0 e^{4i\Phi_0} (\xi_9 + i\xi_{11}) \\ R_1^D e^{2i\Phi_1^D} = R_1 e^{2i\Phi_1} (\xi_{10} + i\xi_{12}) \\ \downarrow & \downarrow \end{cases} \\ & \text{material geometry} \end{split}$$

Lamination parameters

$$\begin{cases} \xi_1 + i\xi_3 = \frac{1}{n} \sum_{j=1}^n e^{4i\delta_j} \\ \xi_2 + i\xi_4 = \frac{1}{n} \sum_{j=1}^n e^{2i\delta_j} \end{cases}$$

$$\begin{cases} \xi_5 + i\xi_7 = \frac{1}{n^2} \sum_{j=1}^n b_j \ e^{4i\delta_j} \\ \xi_6 + i\xi_8 = \frac{1}{n^2} \sum_{j=1}^n b_j \ e^{2i\delta_j} \end{cases}$$

$$\xi_{9} + i\xi_{11} = \frac{1}{n^{3}} \sum_{j=1}^{n} d_{j} e^{4i\delta_{j}}$$
$$\xi_{10} + i\xi_{12} = \frac{1}{n^{3}} \sum_{j=1}^{n} d_{j} e^{2i\delta_{j}}$$

CO MEC H 00000	Introduction 0000	Classical elasticity 0000000000000000000	Architectured 000000000

• Geometrical bounds for polar components of a laminate (Vannucci, J Elas, 2013)

$$\begin{split} \rho = & \frac{R_0}{R_1}, \quad \rho_0 = \frac{R_0^{A,D}}{R_0}, \quad \rho_1 = \frac{R_1^{A,D}}{R_1}, \quad \tau_0 = \frac{T_0}{R_0}, \quad \tau_1 = \frac{T_1}{R_1}. \\ 0 \leq & \rho_0, \quad 0 \leq \rho_1, \quad \rho_0 \leq 1, \quad 2\rho_1^2 \leq \frac{1-\rho_0^2}{1-(-1)^{KL}\rho_0 \ c_0}, \quad 2\rho_1^2 < \rho \tau_0 \tau_1 \frac{1-\left(\frac{\rho_0}{\tau_0}\right)^2}{1-\frac{\rho_0}{\tau_0} \ c_0}. \end{split}$$

MICROSTRUCTURE EXAMPLES

- \rightarrow Orthotropic elementary layer
 - Uncoupling
 - Membrane : R_0 -orthotropy
 - Bending : R₀-orthotropy

 $\begin{bmatrix} -11.1, 28.5, 25.2, -28.7, -24.5, 87.4, 40.0, 29.5, -24.1, 16.6, \\ 7.0, 49.2, 8.0, -14.9, 0.7, 56.0, -49.8, 37.9, -20.4, 11.5 \end{bmatrix}$

- Uncoupling
- Membrane : r₀-orthotropy
- Bending : r₀-orthotropy

 $\begin{bmatrix} -17.6, -11.9, -36.4, 7.0, 25.9, -71.5, 59.8, -76.2, -14.1, 50.7, \\ -47.1, 16.9, 39.0, 86.1, -35.4, -70.1, -9.4, 25.0, -20.6, -15.0 \end{bmatrix}$

COMECH	Introduction	Classical elasticity	Architectured
00000	0000	000000000000000000000000000000000000000	000000000

Design of anisotropic laminates

		111011100004104
00000 0000	000000000000000000000000000000000000000	000000000

Design of anisotropic laminates

- Be: $\mathcal{P} = \{\mathcal{P}_i, i = 1, ..., 12\} = \{R_0, R_1, \Phi_0 \Phi_1, \Phi_1\}_{A,B,D}$
 - $\mathbb{A} = \mathbb{A}(\mathcal{P}_i), \ \mathbb{B} = \mathbb{B}(\mathcal{P}_i), \ \mathbb{D} = \mathbb{D}(\mathcal{P}_i), \text{ unique correspondence}$
 - functions $\mathcal{P}_i = \mathcal{P}_i(\delta_j)$ are not bijective

COMECH Introdu	tion Classical elasticity	Architectured
00000 0000	000000000000000000000000000000000000000	00000000

DESIGN OF ANISOTROPIC LAMINATES

- Be: $\mathcal{P} = \{\mathcal{P}_i, i = 1, ..., 12\} = \{R_0, R_1, \Phi_0 \Phi_1, \Phi_1\}_{A,B,D}$
 - $\mathbb{A} = \mathbb{A}(\mathcal{P}_i), \ \mathbb{B} = \mathbb{B}(\mathcal{P}_i), \ \mathbb{D} = \mathbb{D}(\mathcal{P}_i), \text{ unique correspondence}$
 - functions $\mathcal{P}_i = \mathcal{P}_i(\delta_j)$ are not bijective

- Each problem is split into 2 subproblems, linked together and to be solved in sequence:
 - Step 1: the Structure Problem: design of the optimal anisotropy properties with respect to f(x); the problem is formulated in the space of the \mathcal{P}_i s using the geometrical (feasibility) constraints
 - Step 2: the Constitutive Law Problem: determination of a suitable stacking sequence δ_j able to realize a laminate with the optimal \mathcal{P}_i s; non-bijectivity \Rightarrow non-uniqueness.

Optimal anisotropic fields

- Idea: fibre placement
- Pb: properties (p. ex. $\mathbb{B} = 0$) are local
- Mathematically: optimization of three tensor fields of anisotropy, with local constraints

Optimal anisotropic fields

- Idea: fibre placement
- Pb: properties (p. ex. $\mathbb{B} = 0$) are local
- Mathematically: optimization of three tensor fields of anisotropy, with local constraints

• stiffness optimization

(PhD theses of C. Julien and A. Jibawy, 2010, Univ P6)

• stiffness and strength optimization

(PhD thesis of A. Catapano, 2013, Univ P6)

COMECH 00000	Introduction 0000	Classical elasticity 0000000000000000	Architectured 000000000

• Objective: minimization of the compliance; angle-ply laminates

COMECH	Introduction	Classical elasticity	Architectured
00000	0000	0000000000000000	000000000

(a) Répartition de l'orientation optimale des fibres α^{opt}

(b) Répartition des valeurs de Φ_1^{opt}

COMECH	Introduction	Classical elasticity	Architectured
00000	0000	000000000000000000000000000000000000000	00000000

COMECH

Introduction

Optimization of anisotropic standard structures

Optimization of architectured structures

PANTOGRAPH - BIAS TEST

COMECH	Introduction	Classical elasticity	Architectured
00000	0000	0000000000000000	000000000

Discrete model

• Stretching contribution of each micro-beam:

$$w_a = \frac{1}{2}k_a (\ell - \ell_0)^2$$

• Bending contribution of each micro-beam:

$$w_b = k_b \left(\cos \beta + 1 \right)$$

• Shear contribution of each pivot:

$$w_s = \frac{1}{2} \sum_{q=1}^4 k_s \left(\gamma_q - \frac{\pi}{2}\right)^2$$

COMECH	Introduction	Classical elasticity	Architectured
00000	0000	000000000000000000000000000000000000000	000000000

DISCRETE SIMULATION

Pantograph dimensions: 70 mm x 210 mm

$$k_a = 20 \text{ N mm}^{-1}$$
 $k_b = 20 \text{ N mm}$ $k_s = 2.7 \text{ N mm}$

56mm

COMECH	Introduction	Classical elasticity	Architectured
00000	0000	00000000000000000	000000000

Shear-extension test: $\varepsilon_a^{max}=5.2\%$, $R.u_d=694$

1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80 90	0100

COMECH	Introduction	Classical elasticity	Architectured
00000	0000	0000000000000000	000000000

Shear-extension test: $\varepsilon_a^{max} = 5.2\%$, $R.u_d = 694$

COMECH	Introduction	Classical elasticity	Architectured
00000	0000	000000000000000000000000000000000000000	0000000000

Shear-extension test: $\varepsilon_a^{max}=4.3\%$, $R.u_d=694$

COMECH	Introduction	Classical elasticity	Architectured
00000	0000	0000000000000000	000000000

Shear-extension test: $\varepsilon_a^{max} = 4.3\%$, $R.u_d = 694$

COMECH	Introduction	Classical elasticity	Architectured
00000	0000	000000000000000000000000000000000000000	000000000

Shear-extension test: $\varepsilon_a^{max}=4.3\%\;,\;R.u_d=694$

 \rightarrow Associated microstructure ?

COMECH 00000	Introduction 0000	Classical elasticity 0000000000000000	Architectured

CONCLUSION

Topology and anisotropy design of architectured structures

- Determine the optimal topology and field of anisotropy for a 2D generalized continuum with respect to a given objective function and constraints
- Find the associated microstructures