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ARCHITECTURED MATERIALS

Definition
A material will be said to be architectured if:

I It presents, between its microstructure and its macrostructure, one or more other scales of
organization of matter;

I If the intermediate organization scales are commensurable with those of the microstructure
and/or the macrostructure.

(a) Stacking spheres (b) Trabecular bone (c) Coextruded steel

Characteristics of architectured materials
I Multi-functional applications and multi-physical behaviours;
I Strong anisotropy;
I Weak separation between the different scales of the material.
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CONTINUOUS DESCRIPTION OF STRUCTURAL EFFECTS

We want to make architecture disappear ...

...while maintaining structural effects at the material level.

The complexity is contained in the algebraic structure of the constitutive law.

⇒ How to make this transition rigorously is the job of the UP research group (c.f. A.
Lebée).
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ELASTO-DYNAMICS OF MICROSTRUCTURED MEDIA (ELADYN)

I Main topics:
1. Theoretical framework for anisotropic generalized continua;
2. Wave propagation in microstructured media;
3. Continuum simulation of wave propagation in mechanical metamaterials;
4. Development of experimental testing devices adapted to architectured materials.

I Coordinators:
I French side: Nicolas Auffray, Giuseppe Rosi;
I Italian side: Luca Placidi.

(a) Trabecular bone (b) Honeycomb (c) Energy flow in honeycomb (d) Wave control
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(SELECTED) PAST ACTIONS (2015-2018)
I Summer School on Elastic metamaterials, Alghero, Italy, 22-29th of May 2016 (with G.

Milton)

I Exchange of researchers: around 20 weeks of exchanges were funded between France and
Italy for the former META R.G.
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PRODUCT OF THE RESEARCH GROUP

I Publications: Around 10 publications involving at least one French and one Italian author
belonging to F2M and M&MoCS;

I Co-advised PhD: Mario Spagnuolo:Continuous models for multi-phase architectured/meta
materials Directors: P. Franciozi (LSPM,UP13), F. dell’Isola (La Sapienza,Roma);

I National contracts:
I METAMORPH (PEPS INSIS): Caractérisation mécanique inverse des métamatériaux:

modélisation, identification expérimentale des paramètres et évolutions possibles. Coordinator: J.
Réthoré (INSA LYON);

I Strain gradient materials vs. stress gradient materials (PEPS INSIS). Coordinator: K. Sab
(Navier, Marne-la-Vallée);

I ANR ArchiMatHOS (2018-2022): Design of architectured materials using higher order
homogenization. Coordinator: A. Lebée (Navier, Marne-la-Vallée);

I ANR MoMaP (2019-2023): Mesure et Optimisation des Matériaux Architecturés Périodiques
Coordinator: M. Francois (GeM, Université de Nantes);

I ANR Max-Oasis (2020-2024): Matériaux Architecturés eXotiques, Ondes, AniSotropie,
InStabilités. Coordinator: N. Auffray (MSME, Marne-la-Vallée);
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SPACES OF 2D CLASSICAL AND GENERALIZED ELASTIC MATERIALS

Aims of the talk
1. set the differences between elastic tensors and elastic materials;

2. describe the elastic material domain in terms of invariants of the integrity basis;

3. extend the approach to generalized continuum elasticity;

The 2D setting
1. complex enough to produce non trivial results;

2. simple enough to handle explicit computations;

3. illustrate the possibilities of the geometric approach;

4. construct situations that can be extended to the 3D problem.
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THE ELASTICITY TENSOR

Hooke’s law
Linear relation between the stress tensor σ

∼
∈ S2(Rd) and the strain tensor ε

∼
∈ S2(Rd):

σ
∼

= C
≈

: ε
∼

with C
≈

an element of the vector space Ela4(d) := S2(S2(Rd));

O(d)-action
O(d) acts on Ela4(d) through ? defined by:

? : O(d)× Ela4(d)→ Ela4(d) ; (Q
∼
, C
≈

) 7→ Q
∼
? C
≈

:= QioQjpQkqQlrCopqr

Figure: Different samples extracted from the same material.
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AN ELASTIC MATERIAL: A O(d) -ORBIT

Orbit
The set of tensors of Ela4(d) O(d)-conjugate to C

≈
constitutes its O(d)-orbit :

Orb(C
≈

) :=

{
C
≈

= Q ? C
≈
| Q ∈ O(d)

}
.

The orbits space is the quotient space Ela4(d)/O(d).

Note
An elastic material is

I An orbit of Ela4(d) ;
I A point of Ela4(d)/O(d).
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SYMMETRY PROPERTIES

Symmetry Group
Symmetry group of an elasticity tensor:

GC
≈

:=

{
Q
∼
∈ O(d), Q

∼
? C
≈

= C
≈

}
.

Tensors on the same orbit have conjugate symmetry groups.

Symmetry Class
The class of symmetry is the conjugacy class of a symmetry group.

[GC
≈

] :=

{
Q
∼

GC
≈

Q
∼
−1, Q

∼
∈ O(d)

}
.

Ela4(d) is divided into strata of different symmetry classes.
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2D ELASTICITY TENSORS

Symmetry groups of 2D elasticity tensors belong to 4 symmetry classes:

Biclinic Orthotropic Tetragonal Isotropic

[GC
≈

] [Z2] [D2] [D4] [O(2)]

#indep(C
≈

) 6 (5) 4 3 2

Figure: Schematic figures of the symmetry classes of 2D elasticity tensors

The space of elasticity tensors is divided into 4 strata:

Ela4 = Σ[Z2]
∪ Σ[D2]

∪ Σ[D4]
∪ Σ[O(2)]
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HARMONIC DECOMPOSITION IN R2

Definition
Let Kn be the space of nth-order harmonic tensors in 2D, its elements are:

1. n-th order tensors;

2. symmetric with respect to the permutation of all the indices;

3. traceless.

In R2, we have

dimKn =

{
2, n ≥ 1
1, n = 0,−1

Transformation of irreducible components
For all n ≥ 1, O(2)-action on Kn is given by ρn:

ρn(R
∼

(θ)) :=

(
cos nθ − sin nθ
sin nθ cos nθ

)
, ρn(P

∼
(e2)) :=

(
1 0
0 −1

)
,
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BASIS FOR O(2)-POLYNOMIAL INVARIANTS OF Ela4

C
≈

can be decomposed as follows

C
≈

= D
≈

+
1
2

(1
∼
⊗ d
∼

+ d
∼
⊗ 1
∼

) +
κ

2
P
≈

0 +
γ

2
P
≈

2

with
D
≈
∈ K4, d

≈
∈ K2, κ, γ ∈ K0,

O(2)-integrity basis of Ela4

The following quantities

I1 = κ, J1 = γ, I2 = d
∼

: d
∼
, J2 = D

≈
:: D
≈
, I3 = d

∼
: D
≈

: d
∼

I A list (I1, J1, I2, J2, I3) specifies uniquely an elastic material;
I Any O(2) polynomial invariant of Ela4 is a polynomial in (I1, J1, I2, J2, I3);
I Verify the inequality (Cauchy-Schwarz): I2

2 J2 − 2I2
3 ≥ 0;
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GEOMETRIC DOMAIN OF THE ORBIT SPACE [4]

Biclinic: Σ[Z2]

I2
2 J2−2I2

3=0, J2 6=0

��
Orthotropic: Σ[D2]

I2=0

��
Tetragonal: Σ[D4]

J2=0

��
Isotropic: Σ[O(2)]

Figure: Breaking conditions between strata
Figure: Algebraic variety of elastic materials with
respect to (I2, J2, I3)

This situation is exceptional in its simplicity
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HEXAGONAL ANISOTROPY

Elastodynamic (with G. Rosi)

Experiment: Propagation of elastic waves in a hexagonal lattice [6, 8]

Observation: At low frequency, the propagation is isotropic, when the frequency increases the
propagation becomes hexagonal ...

⇒ The classical elasticity does not see the hexagonal anisotropy
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STRAIN-GRADIENT ELASTICITY: GENERAL CASE

Degrees of freedom: DDL = {u} ; u ∈ Rd

State variables associated with the kinematics

PSV = {ε
∼
, ε
∼
⊗∇}

Linear constitutive law (coupled):

σ∼ = C
≈

: ε
∼

+ M
u

∴ η
'

τ
'

= M
u

T : ε
∼

+ A∼∼∼
∴ η
'

I ε
∼

: strain tensor;

I η
'

= ε
∼
⊗∇: strain gradient tensor;

I σ
∼

: Cauchy stress tensor;

I τ
'

: hyperstress tensor.

New elasticity tensors:
I M

u
allows coupling in non-centro symmetric materials (order ε1) [2, 5];

I A∼∼∼
allows hexatropic wave propagation (order ε2) [6, 8, 7].
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STRAIN-GRADIENT ELASTICITY: CENTRO-SYMMETRIC CONTINUUM

Degrees of freedom: DDL = {u} ; u ∈ Rd

State variables associated with the kinematics

PSV = {ε
∼
, ε
∼
⊗∇}

Linear constitutive law (uncoupled):

σ∼ = C
≈

: ε
∼

τ
'

= A∼∼∼
∴ η
'

I ε
∼

: strain tensor;

I η
'

= ε
∼
⊗∇: strain gradient tensor;

I σ
∼

: Cauchy stress tensor;

I τ
'

: hyperstress tensor.

New elasticity tensors:
I M

u
allows coupling in non-centro symmetric materials (order ε1) [2, 5];

I A∼∼∼
allows hexatropic wave propagation (order ε2) [6, 8, 7].
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ANISOTROPIC PROPERTIES OF Ela6

Space of 6-th order tensors:

Ela6 := {A∼∼∼
∈ ⊗6(R2)|A(ij)k (lm)n}

Symmetry classes [1, 3]

I(Ela6) = {[Z2], [D2], [Z4], [D4], [Z6], [D6], [SO(2)], [O(2)]}

Bifurcation diagram:

[D2] //

!!

[D6]

""
[D4] // O(2)

[Z2]

OO

//

!!

[Z6]

""

OO

[Z4]

OO

// SO(2)

OO New Features:
I Chiral sensitivity;
I Higher order anisotropy.
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ANISOTROPIC PROPERTIES OF Ela6

Space of 6-th order tensors:

Ela6 := {A∼∼∼
∈ ⊗6(R2)|A(ij)k (lm)n}

The harmonic structure of Ela6

Ela6 ' K6 ⊕ 2K4 ⊕ 5K2 ⊕ 3K0 ⊕ K−1

Dimensions of the anisotropic operators

Nom Digonale Orthotrope Tetrachirale Tetragonale

[GA∼∼∼
] [Z2] [D2] [Z4] [D4]

#indep(A∼∼∼
) 21 (20) 12 9 (8) 6

Nom Hexachirale Hexagonale Hemitrope Isotrope

[GA∼∼∼
] [Z6] [D6] [SO(2)] [O(2)]

#indep(A∼∼∼
) 7 (6) 5 5 4
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THE HEXATROPIC SITUATION: D6

(
σ
∼
τ
'

)
=

C
≈

O(2) 0

0 A∼∼∼
D6

(ε∼
η
'

)
avec η

'
= ε
∼
⊗∇

with:

C
≈

O(2) =

c11 c12 0
c11 0

c11 − c12

 ;

and

A∼∼∼
D6 =



a11 a12
a11−a22√

2
−a23 0 0 0

a22 a23 0 0 0
a11+a22

2 −a12 0 0 0

a44 a11−a44+a12
3a11−a22√

2
−a23−

√
2a44

a22+a44−a11
√

2(a44−a11)+a23
−3a11+a22

2 −a12+2a44

 .
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HOMOGENIZED WAVE PROPAGATION (G. ROSI)
With explicit microstructure:

(a) Low frequency (b) High frequency

Once homogenized (c.f. talk of N. Bochud):

(c) Low frequency (d) High frequency 27 / 34
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PSEUDO CLOAKING EFFECT IN ARCHITECTURED MATERIALS [7]
In condensed form

A∼∼∼
D6 (Θ) = A∼∼∼

O(2) + aDA∼∼∼
(Θ)

Schematic representation of the angles
involved:

Distribution of the material orientation angle Θopt(x1) within a sample
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APPLICATION: PSEUDO CLOAKING EFFECT IN ARCHITECTURED
MATERIALS [7]

(a) θ = 0 (b) θ is optimized

Next step
Deshomogenization of the optimal solution
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CONCLUSION

1. set the difference between elastic tensors and elastic materials;

2. describe the elastic material domain in terms of invariants of the integrity basis;

3. investigate effects associated with weak scale separation;

4. extend the classical approach to higher order elasticity.
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CONNECTION WITH OTHER TOPICS OF THE PROJECT

Connection with other topics of the project

I COMECH: Topological optimization,. . .
I BIO: Growth and remodelling of

biomaterials,. . .
I NLS: Control of smart materials,

controlled instabilities, . . .

Optimal design

I Response to specifications;
I Achieving non standard properties;
I Controlling wave propagation;
I . . .
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PERSPECTIVES

Extension/ Generalization

I Geometrization of other constitutive laws (2D setting);
I General algorithm for computing integrity basis;
I Piezo-electricity (third-order tensor);
I Flexo-electricity (fourth-order);
I Strain-gradient elasticity (Fifth- and sixth-order)
I . . .

I Extension to 3D elasticity
I Cubic, Transverse isotropy....Full case
I Reformulation of the Walpole classical table;

I Optimal Design
I Exploring exotic anisotropic classes;
I Deshomogenization problem;
I Yield functions...
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