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The aim of the lecture is
to discuss similarity and difference in anti-plane surface waves
propagation in an elastic half-space within the framework of of
Gurtin-Murdoch surface elasticity and the lattice dynamics.
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Statement of the problem
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Figure: 1) Half-space with surface stresses and 2) a square lattice with
different particles at the surface.
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Gurtin-Murdoch model of the surface elasticity

We consider infinitesimal deformations of an elastic solid which are
described by the displacement field

u = u(x, t), (1)

where u is twice differentiable vector-function of displacements, x is the
position vector and t is time.
Within the Gurtin–Murdoch approach in the bulk, we have classic
constitutive equations of an isotropic solid

W = µe : e +
1
2
λ(tr e)2, σ ≡ ∂W

∂e
= 2µe + λ I tr e, (2)

where W is the strain energy density, λ and µ are Lamé moduli, σ is
the stress tensor, e is the strain tensor. The kinetic energy density is
given by

K =
1
2
ρu̇ · u̇, (3)

where ρ is the mass volume density.
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Surface energies

Additionally, we introduce the surface strain energy density Ws and
surface stress tensor s are defined as follows

Ws = µsǫ : ǫ+
1
2
λs(tr ǫ)

2,

s ≡ ∂Ws

∂ǫ
= µsǫ+ λsP(tr ǫ), (4)

ǫ =
1
2

(

P · (∇su) + (∇su)T · P
)

,

where λs and µs are the surface elastic moduli, tr is the trace operator,
∇s is the surface nabla operator, P ≡ I − n ⊗ n, n is the unit vector of
outer normal to ∂V. In addition, we take into account the surface mass
density and introduce the following formula for surface kinetic energy
density

Ks =
1
2

mu̇ · u̇
∣

∣

x∈∂V , (5)

where m is the surface mass density and ∂V is the boundary of V.
Eremeyev& Sharma (PG& IITK) Champs sur Marne, 17-18.10.2019 8



Variational statement

Motion and natural boundary equations can be derived using the least
action principle with the functional

L =

∫ T

0

∫

V
(K −W) dV dt +

∫ T

0

∫

∂V
(Ks −Ws) da dt. (6)
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Anti-plane surface waves in an elastic half-space

Let us consider stationary waves of an elastic half-space x1 ≤ 0. In
what follows we use the Cartesian coordinates x1, x2 and x3 with the
basis ik, k = 1, 2, 3.
For the anti-plane motion, the vector of displacement takes the form

u = u(x1, x2, t)i3. (7)

From (7), it follows that

∇u = u,αi3 ⊗ iα = i3 ⊗∇u, ∇ · u = 0,

e =
1
2
(∇u ⊗ i3 + i3 ⊗∇u), ∇e =

1
2
(i3 ⊗∇∇u +∇u,αi3 ⊗ iα)

Hereafter, we used the notation u,α = ∂u
∂xα

, and Greek indices take
values 1, or 2. ∇ · u is the divergence of u.
Under assumption that a steady state has been reached, we may
search displacement of the form

u = U(x1) exp [i(kx2 − ωt)] , (8)

where k is the wavenumber, ω is the circular velocity, and i =
√
−1.
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Surface elasticity

For the anti-plane shear deformation (7), the motion equations and the
boundary conditions reduce to

ρü = µ∆u, (9)

− mü + µsu,22 = µu,1. (10)

Substituting (8) into (9), we obtain the ordinary differential equation
with respect to U

[

µ(∂2 − k2) + ρω2]U = 0. (11)

Assuming that the displacement decays exponentially with distance
from the half-space surface, we find the solution of (11)

U = U0 exp

[

√

k2 − ω2/c2
T x1

]

,

where U0 is an amplitude and cT =
√

µ
ρ

is the phase velocity of shear

waves in the bulk.
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Solution

As a result, we obtain the expression for an anti-plane surface wave of
the form

u = U0 exp

[

√

k2 − ω2/c2
T x1

]

exp [i(kx2 − ωt)] . (12)

Substituting (12) into (10), we obtain the dispersion equation

DS(ω, k) ≡ mω2 − µsk
2 − µ

√

k2 − ω2

c2
T

= 0. (13)
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Dispersion relation

The latter equation transforms to

c2 =
µs

m
+

µ

m
1
|k|

√

1 − c2

c2
T

(14)

with solution of the form

|k| =
µ
√

1 − c2

cT
2

m(c2 − c2
S)
, (15)

where cS =
√

µs/m is the shear wave velocity in the thin film
associated with the Gurtin–Murdoch model. Obviously, the
wavenumber k is real if and only if

c ≤ cT , c > cS. (16)
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Square lattice

The positions of the lattice particles are described through its lattice
coordinates x ∈ Z, y ≤ 0, y ∈ Z. The lattice mostly consists of
identical particles of mass M connected to each other by linearly
elastic bonds (springs) of stiffness K. In order to model surface tension
we assume that the free surface y = 0 is constituted by particles with
masses mM and bonds with spring constant αK, whereas m and α are
dimensionless parameters. The anti-plane displacement of a particle,
indexed by its lattice coordinates x ∈ Z, y ∈ Z, is denoted by ux,y.
Herein and after, let Z denote the set of integers. The motion equation
for square lattice is given by

Müx,y = K (ux+1,y + ux−1,y + ux,y+1 + ux,y−1 − 4ux,y) (17)

for x ∈ Z, y < 0, y ∈ Z. On the free surface that is for x ∈ Z, y = 0 we
have

mMüx,y = αK (ux+1,y + ux−1,y − 2ux,y) + K (ux,y−1 − ux,y) . (18)
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Surface wave

Let us consider the discrete analogue of the surface wave form, i.e.,

ux,y = u0 exp(iξx− iωt) exp(ηy), (19)

where ξ is the discrete wave number, ξ ∈ (−π, π), and η is assumed to
be positive.
It is found that ω and η satisfy the two equations

− Mω2 = K (2 cos ξ + 2 cosh η − 4) , (20)

− mMω2 = αK (2 cos ξ − 2) + K(exp(−η)− 1). (21)
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Dispersion relation

Motivated by a continuum context, let

M = ρa3, K = µa, (22)

where ρ and µ are the mass density and shear modulus introduced in
previous Section. Then from (35) and (36) we get

ω2 =
c2

T

a2 (4 − 2 cos ξ − 2 cosh η) , (23)

ω2 =2
αc2

T

ma2 (1 − cos ξ) +
c2

T

ma2 (1 − exp(−η)). (24)

These two equations result in a dispersion relation for the surface
waves on square lattice half-plane with surface structure. As ξ and η
play a role of k and γ, respectively, Eqs. (23) and (24) are the discrete
analogues of the dispersion relation for the elastic half-space with
surface stresses.
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Dispersion curves
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c = cGM(k) is the phase velocity for the Gurtin–Murdoch model
c = clm(k) is the phase velocity for the lattice model given by (23) and (24)

c = co(k) is the phase velocity for an infinite square lattice given by (25)

Figure: Phase velocity vs. wave number for discrete and continuum model.
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Dispersion curves: parameters

In order to compare the dispersion relation (15) with (23) and (24) we
substitute ξ = ka and consider k in the range k ∈ [0, π/a]. The dashed
blue curve in Fig. 2 corresponds to the equation

c = co(k) ≡ 2cT

∣

∣sin
(

ka
2

)
∣

∣

ka
, (25)

which gives the phase velocity co for an infinite square lattice. Here we
used the following values of material parameters: cT = 1, cs =

√
0.2,

r = 0.005 for continuum model and a = 0.01, α = 0.1 and m = 0.5 for
the lattice. Note that these parameters satisfy the relation

cGM(0) = cT = clm(0). (26)

From (26) we get the relation

cT =

√

µ

ρ
= a

√

K
M
,

which is consistent with assumption (22). So for long wave
approximation (k ≈ 0) we have good coincidence between models.
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Scaling law

Clearly, while keeping m and α constant as a → 0 we cannot obtain
anti-plane surface wave as a continuum limit of the discrete model,
since in this case we recover an elastic half-space for which it is well
known that such waves do not exist. Hence, to capture the behaviour
of the Gurtin–Murdoch model one needs to apply an appropriate
scaling for m and α.
Here we propose the following scaling law

α =
1
a
µs

µ
, m =

1
a
ρs

ρ
. (27)

With (27) we get that the surface bond stiffness became constant at
a → 0, αK = µs, whereas the mass of surface particles mM = ρsa2. As
a results, for cs we have

cs =

√

µs

ρs
=

√

αK
mM

a =

√

α

m
cT . (28)

So the scaling law (27) gives the second correspondence between
continuum and discrete model.
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Dispersion curves
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Figure: Phase velocity vs. wave number for discrete and continuum model for
a = 0.001 (on the left) and a = 0.0001 (on the right).
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Comparison with Toupin–Mindlin model

Let us note that the relations between the linear Gurtin–Murdoch
model and the lattice model in a certain sense similar to relations
between surface elasticity and the Toupin–Mindlin linear strain gradient
elasticity. Indeed, both theories possess surface energy and the
corresponding dispersion relations for anti-plane surface waves are
qualitatively similar for both models. The relations between material
parameters of these models can be obtained from the equations

cGM(0) = cT = cTM(0), lim
k→∞

cGM(k) = cs = lim
k→∞

cTM(k),

where cTM = cTM(k) is the phase velocity for the Toupin–Mindlin
constitutive relations. Nevertheless, there is difference in decay with
the depth, so their correspondence is not straightforward as in
presented case here. In addition, for the discrete model clm(k) is
defined for the finite range of k.
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Surface interface

Figure: Geometry of the three dimensional lattice half space is shown
schematically by placing a cutting section along x-y plane. On the right side
(by zooming into the central portion), an atomic/particle based discrete model
of an elastic half space with surface interface is shown. The kinematics
assumed is that if anti-plane motion, i.e. the displacement occurs along z
direction only, as shown on the left, while it is independent of the z coordinate.
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Surface interface

Figure: An illustration of the geometry of the lattice half space with structured
surface interface on free boundary. A two dimensional projection is
schematically illustrated from previous figure.
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Equation of motion

The motion equation for square lattice is given by

Müx,y = K (ux+1,y + ux−1,y + ux,y+1 + ux,y−1 − 4ux,y) (29)

for x ∈ Z
+, y < 0, y ∈ Z. On the free surface that is for 0 < x ∈ Z,

y = 0 we have

mAMüx,y = αAK (ux+1,y + ux−1,y − 2ux,y) + K (ux,y−1 − ux,y) , (30)

for x ∈ Z
−, y = 0 we have

mBMüx,y = αBK (ux+1,y + ux−1,y − 2ux,y) + K (ux,y−1 − ux,y) . (31)

for x = 0, y = 0 we have

mAMüx,y = αAK (ux+1,y + ux−1,y − 2ux,y) + K (ux,y−1 − ux,y) . (32)
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Incident surface wave

Let us consider the incident surface wave

uin
x,y = A exp(−iξinx− iωt) exp(ηiny), (33)

where ξin is the discrete wave number from the right side such that
Vg(ξin) < 0, ξin ∈ (0, π), and ηin is assumed to be positive. Let

ω = ωa/c. (34)

It is found that ω = ωA(ξin) and ηin = ηA(ξin) satisfy the two equations

−ω2 = (2 cos ξin + 2 cosh ηin − 4) , (35)

− mAω
2 = αA (2 cos ξin − 2) + (exp(−ηin)− 1). (36)
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Lattice strip with the interface

Figure: An illustration of the geometry of the lattice strip with structured
surface interface on free boundary.
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Reflectance, transmittance, leaked energy flux

Figure: The reflectance (black thin curves), transmittance (gray thick curves),
and the leaked energy flux (black thick curves) by superposition of the eight
values of N; N = 2, 3, . . . , 8 with αA = 1.4, αB = 1.5, mA = 2, mA = 5.
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Future Steps

Surface interface — reflection and transmission of surface waves
across the surface interface using both discrete and continuum
model;

“Full” description of surface waves within both theories;

Complex lattices;

Complex particle interactions.
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Conclusions

For anti-plane surface waves, we demonstrate the essential
similarity between dispersion relations derived within both
discrete and continuum model of a surface structure. We
consider a square semi-infinite lattice with a surface row of
particles which properties are different from ones in the bulk,
and the linear Gurtin–Murdoch model of surface elasticity.
These different models can capture material behavior
related to presence of surface energy.
On the other hand the transition from the lattice model to the
Gurtin–Murdoch model is not straightforward, as it requires
additional assumptions on the dependence of surface
particles’ mass and surface bond stiffness on the lattice cell
length a.
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Thank you for your attention!

Further Questions:
eremeyev.victor@gmail.com
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