Dispersion of plane wave propagation in periodic poroelastic materials: A comparison between Bloch-based and homogenization approaches

Vu-Hieu Nguyen ^a, Eduard Rohan ^b, Salah Naili ^a

^aLaboratory of Multiscale Modeling and Simulation, MSME UMR 8208 CRNS, University of Paris-Est, France ^bNTIS-New Technologies for Information Society, Faculty of Applied Sciences, University of West Bohemia, Czech Republic

Introduction

Wave propagation in periodic poroelastic media

- Acoustic materials
- Biological tissues
- Geophysics

Objective

- Models for studying effective dynamic behavior
 - Two situations: low and high contrasts
 - Asymptotic homogenization technique
 - Numerically put in evidence the validity of the derived models

Introduction

Only passage mesoscopic - macroscopic is interested

Equations at the mesoscale

Poroelastic equations in frequency domain: Biot's model [Biot, 1956]

• Dynamic equations

$$\begin{split} &-\omega^2 \bar{\rho} \boldsymbol{u} + \mathrm{i} \omega \rho^f \boldsymbol{w} - \nabla \cdot \boldsymbol{\sigma} = \boldsymbol{0}, \\ &-\omega^2 \rho^f \boldsymbol{u} + [\boldsymbol{k}(\omega)]^{-1} \boldsymbol{w} + \nabla p = \boldsymbol{0}, \end{split}$$

Constitutive equations

$$\boldsymbol{\sigma} = \mathbb{D}\boldsymbol{\epsilon}(\boldsymbol{u}) - \boldsymbol{\alpha}p$$
$$p = -M[\boldsymbol{\alpha}:\boldsymbol{e}(\boldsymbol{u}) + (\mathrm{i}\omega)^{-1}\nabla \cdot \boldsymbol{w}]$$

where

- u: solid displacement
- w: fluid effective velocity $w = (i\omega)\phi(u^f - u^s)$
- σ : total stress tensor
- \bullet p: interstitial fluid pressure

ρ^f, ρ̄: mass densities
D: drained elastic tensor
α, M: Biot's coupling constants
k(ω): dynamic permeability tensor

(Y-periodic)

Homogenized models

Low contrast vs high contrast

Low contrast

$$\begin{split} \bar{\rho}^{\varepsilon} &= \chi_m(y)\bar{\rho}_m(y) + \chi_c(y)\bar{\rho}_c(y) \\ \mathbb{D}^{\varepsilon} &= \chi_m(y)\mathbb{D}_m(y) + \chi_c(y)\widehat{\mathbb{D}}_c(y) \\ \boldsymbol{\alpha}^{\varepsilon} &= \chi_m(y)\boldsymbol{\alpha}_m(y) + \chi_c(y)\boldsymbol{\alpha}_c(y) \\ \boldsymbol{K}^{\varepsilon} &= \chi_m(y)\widehat{\boldsymbol{K}}_m(y) + \chi_c(y)\boldsymbol{K}_c(y) \end{split}$$

High contrast

- Y_m is much more stiffer than Y_c
- Y_c is much more permeable than Y_m

$$\bar{\rho}^{\varepsilon} = \chi_m(y)\bar{\rho}_m(y) + \chi_c(y)\bar{\rho}_c(y)$$
$$\mathbb{D}^{\varepsilon} = \chi_m(y)\mathbb{D}_m(y) + \varepsilon^2 \chi_c(y)\widehat{\mathbb{D}}_c(y)$$
$$\boldsymbol{\alpha}^{\varepsilon} = \chi_m(y)\boldsymbol{\alpha}_m(y) + \varepsilon \chi_c(y)\boldsymbol{\alpha}_c(y)$$
$$\boldsymbol{K}^{\varepsilon} = \varepsilon^2 \chi_m(y)\widehat{\boldsymbol{K}}_m(y) + \chi_c(y)\boldsymbol{K}_c(y)$$

Homogenized model: low contrast case

Macroscopic wave equations

Macroscopic equations of effective medium

$$-\omega^{2}\mathcal{M}\boldsymbol{u}^{0}-\nabla\cdot[\mathcal{D}\boldsymbol{e}(\boldsymbol{u}^{0})-\mathcal{A}p^{0}]-\mathrm{i}\omega\rho^{f}\mathcal{K}\nabla p^{0}=0$$
$$\boldsymbol{\mathcal{A}}:\mathrm{i}\omega\boldsymbol{e}(\boldsymbol{u}^{0})+\omega^{2}\rho^{f}\nabla\cdot(\mathcal{K}\boldsymbol{u}^{0})-\nabla\cdot(\mathcal{K}\nabla p^{0})+\mathrm{i}\omega\mathcal{Q}p^{0}=0$$

• Frequency-independent effective properties

$$\begin{aligned} \mathcal{D}_{ijkl} &= \int_{Y} [\mathbb{D}(y) \boldsymbol{e}_{y}(\boldsymbol{\chi}^{kl} + \boldsymbol{\Pi}^{kl})] : \boldsymbol{e}_{y}(\boldsymbol{\chi}^{ij} + \boldsymbol{\Pi}^{ij}) \\ \mathcal{A}_{ij} &= \int_{Y} \alpha_{ij}(y) - \int_{Y} [\mathbb{D}(y) \boldsymbol{e}_{y}(\boldsymbol{\chi}^{*})] : \boldsymbol{e}(\boldsymbol{\Pi}^{ij}) \\ \mathcal{Q} &= \int_{Y} M^{-1}(y) \end{aligned}$$

• Frequency-dependent effective properties

$$\mathcal{K}_{ij} = -\mathrm{i}\omega \int_{Y} \left[\mathbf{K}(\omega, y) \nabla_{y} (\theta^{i} - \frac{1}{\mathrm{i}\omega} y_{i}) \right] \cdot \nabla_{y} y_{j}$$
$$\mathcal{M}_{ij}(\omega) = \int_{Y} \bar{\rho} \delta_{ij} - \mathrm{i}\omega \left(\rho^{f}\right)^{2} \mathcal{K}_{ij}(\omega)$$

similar to Biot's model!

Homogenized model: high contrast case

Macroscopic wave equations

Macroscopic equations

$$-\omega^{2}\mathcal{M}\boldsymbol{u}^{0}-\nabla\cdot[\mathcal{D}\boldsymbol{e}(\boldsymbol{u}^{0})-\mathcal{A}p^{0}]-\mathrm{i}\omega\rho^{f}\mathcal{K}\nabla p^{0}+\mathrm{i}\omega\mathcal{C}p^{0}=0$$
$$\mathcal{A}:\mathrm{i}\omega\boldsymbol{e}(\boldsymbol{u}^{0})+\omega^{2}\rho^{f}\nabla\cdot(\mathcal{K}\boldsymbol{u}^{0})-\nabla\cdot(\mathcal{K}\nabla p^{0})+\mathrm{i}\omega\mathcal{Q}p^{0}+\mathcal{C}\cdot\boldsymbol{u}^{0}=0$$

- \mathcal{D} , \mathcal{A} only depend on the response of Y_m and are frequency-independent
- \mathcal{K} only depends on the response of Y_c and is frequency-dependent
- C depends on the response of Y_c and due to the heterogeneity of Biot's stress coupling coefficient Details given in [Rohan, Naili, Nguyen, Computers & Structures (2017)

Validity of homogenized models

Validation strategies

FE simulation of real structures with real microstructure details

- can be done using a conventional FE analysis
- allows to directly capture local solution
- allows to consider boundary-value problems
- difficult to determine phase velocity and attenuation
- very high computational cost is required

Floquet-Bloch analysis

- allows to directly compute the phase velocities and attenuation
- FE analysis of only one REV is needed
- no works have been found for poroelastic problem

Half-space with orthogonal mesostructure : case of rigid solid phase

Geometry and physical parameters

• $L_1 = L_2 = 0.01 \text{ m}$ • $h_1 = 0.4L_1$ • $h_2 = 0.25L_2$. • κ_0^m variable • $\kappa_0^c = 10^{-6} \text{ m}^2/(\text{Pa.s})$ • $k^f = 2.25 \text{ GPa}$ • $\eta = 10^{-3} \text{ Pa.s}^{-1}$

Objective

- comparison of solution obtained with low and high contrast homogenized model with FE solution
- check the domain of validity of each model.

Half-space with orthogonal mesostructure : case of rigid solid phase

Finite element solution

Validation of high contrast model

Phase velocity

Attenuation

Wave dispersion analysis using Bloch-Floquet method

Governing equations

Biot's poroelastic equations

$$\begin{aligned} &-\omega^2 \rho \boldsymbol{u} - \omega^2 \rho^f \boldsymbol{w} - \nabla \cdot \boldsymbol{\sigma} = \boldsymbol{0} \\ &-\omega^2 \rho^f \boldsymbol{u} - \omega^2 \tilde{\boldsymbol{a}} \boldsymbol{w} + \nabla p = \boldsymbol{0}, \end{aligned} \qquad \qquad \boldsymbol{\sigma} = \mathbb{C} : \boldsymbol{\epsilon} - \boldsymbol{\alpha} p, \\ &p = -M \left(\boldsymbol{\alpha} : \boldsymbol{\epsilon} + \nabla \cdot \boldsymbol{w} \right), \end{aligned}$$

Plane wave problem

Homogeneous media

$$\boldsymbol{u}(\boldsymbol{x},\omega) = \boldsymbol{U}(\omega)(\boldsymbol{x})e^{-\mathrm{i}k\boldsymbol{n}\cdot\boldsymbol{x}}, \qquad \mathbf{w}(\boldsymbol{x},\omega) = \mathbf{W}(\omega)(\boldsymbol{x})e^{-\mathrm{i}k\boldsymbol{n}\cdot\boldsymbol{x}},$$

 \Rightarrow eigenvalue problem providing 4 complex wavenumbers k: 2 (quasi)-compresionnal waves (fast and slow) and 2 (quasi)-shear waves

• Periodic media: Bloch ansatz

$$\boldsymbol{u}(\boldsymbol{x}) = \boldsymbol{U}(\boldsymbol{x},k)e^{-\mathrm{i}k\boldsymbol{n}\cdot\boldsymbol{x}}, \qquad \mathbf{w}(\boldsymbol{x}) = \mathbf{W}(\boldsymbol{x},k)e^{-\mathrm{i}k\boldsymbol{n}\cdot\boldsymbol{x}},$$

where $\boldsymbol{U}(\boldsymbol{x},k)$, $\mathbf{W}(\boldsymbol{x},k)$: Ω_E -periodic functions

Wave dispersion analysis using Bloch-Floquet method

Finite element formulation

Weak formulation

$$-\omega^{2} \int_{\Omega} \bar{\boldsymbol{U}} \cdot \left(\rho \boldsymbol{U} + \rho^{f} \boldsymbol{W}\right) + \int_{\Omega} \bar{\boldsymbol{\mathcal{E}}} : \boldsymbol{\Sigma} + \mathrm{i}k \int_{\Omega} \left(\bar{\boldsymbol{\mathcal{E}}}_{n} : \boldsymbol{\Sigma} - \bar{\boldsymbol{\mathcal{E}}} : \boldsymbol{\Sigma}_{n}\right) + k^{2} \int_{\Omega} \bar{\boldsymbol{\mathcal{E}}}_{n} : \boldsymbol{\Sigma}_{n} = \boldsymbol{0}$$
$$-\omega^{2} \int_{\Omega} \bar{\boldsymbol{W}} \cdot \left(\rho^{f} \boldsymbol{U} + \tilde{\boldsymbol{a}} \boldsymbol{W}\right) - \int_{\Omega} (\nabla \cdot \bar{\boldsymbol{W}}) P - \mathrm{i}k \int_{\Omega} \left[(\boldsymbol{n} \cdot \bar{\boldsymbol{W}}) P - (\nabla \cdot \bar{\boldsymbol{W}}) P_{n} \right] - k^{2} \int_{\Omega} (\boldsymbol{n} \cdot \bar{\boldsymbol{W}}) P_{n} = \boldsymbol{0}$$

Finite element equation

$$\left(-\omega^{2}\mathbf{A}_{0}(\omega)+\mathbf{A}_{1}+\mathsf{i}k\mathbf{A}_{2}+k^{2}\mathbf{A}_{3}\right)\mathbf{V}=\mathbf{0}$$

 \Rightarrow eigenvalue problem to determine the dispersion relation $\omega-k$

- viscous term is present due to permeability $\Rightarrow k$ is not real but complex [Collet *et al*, 2011]
- A is not constant w.r.t $\omega \Rightarrow k$ quadratic eigenvalue problem for k for each value of ω

Numerical results

Wave dispersion of a plane strain 2D poroelastic problem

		Rock (Y_1)	Sandstone (Y_2)
ρ	kg.m ⁻³	2650	2650
ϕ	-	0.15	0.36
K^{b}	-	12.7	1.37
μ^b	GPa	20.3	0.82
α	-	0.6825	0.9658
μ	GPa	12.503	5.7096
k_0	m^2	0.1×10^{-12}	1.6×10^{-12}
ρ^f	$kg.m^{-3}$	1000	1000
K^{f}	GPa	2.25	2.25
η	Pa.s	10^{-3}	10^{-3}
a_{∞}	-	1	2.8

Comparison of wave dispersion obtained from homogenized model and Bloch analysis

Floquet-Bloch analysis of a REV with circular inclusion

Eigenvalues obtained by Floquet-Bloch analysis

	$f = 10^4 \; [{\rm Hz}]$	$f = 10^5 \; [\text{Hz}]$	$f = 3.98 \times 10^5 \; [\text{Hz}]$	$f = 10^{6} [\text{Hz}]$
$\kappa^{(1)}$	16.91 - 0.006i	168.89 - 0.435i	673.3 - 1.99i	-4534.02 - 90.77i
$\kappa^{(2)}$	30.71 - 0.057i	304.74 - 3.77i	1197.5 - 14.4i	1763.65 - 92.09i
$\kappa^{(3)}$	171.58 - 162.75i	729.63 - 408.67i	2398.8 - 587.26i	-3216.03 - 663.90i
$\kappa^{(4)}$	499.93 - 867.014i	1298 - 1385.53i	-3894.4 - 588.66i	3083.97 - 664.76i
$\kappa^{(5)}$	656.25 - 890.34i	423.24 - 1585.8i	3572.7 - 1874.5i	2842.23 - 1350.97i

• k selected basing on its sign and value in order to get less attenuated and propagative modes

Nguyen, Vu-Hieu et al

Validation of homogenized model

Phase velocity

Numerical results

Bloch analysis

(a) Mode
$$P_1$$
, $f=10^5 {
m Hz}$

(b) Mode *S*, $f = 10^5$ Hz

Homogenized mode'

(d) Mode P_1 , $f = 10^5$ Hz (e) Mode *S*, $f = 10^5$ Hz

0.03

0.025

0.02

0.015

0.01

0.005

(f) Mode P_2 , $f = 10^5$ Hz

Numerical results

Elliptical inclusion

Bloch analysis

(i) Mode P2, $f = 10^5$ Hz

Homogenized mod

(j) Mode P1, $f=10^5~{\rm Hz}$

(k) Mode S, $f = 10^5$ Hz

(I) Mode P2, $f = 10^5$ Hz

Validation of homogenized model

Phase velocity

Conclusions

- dynamic reponse of periodic medium can efficiently be predicted using the homogenized model
- the choice of appropriate model depends on the contrast of poroelastic and permeability properties
- finite element formulations have been derived for computing Floquet-Bloch eigenvalues of poroelastic media
- validation of time-domain responses has not been done
- for more details :
 - ▶ Nguyen et al Int J Eng Sci, 2016,
 - Rohan etal Computers & Structures, 2017,
 - ▶ Rohan *etal ZAMM*, 2018

Thank you for your attention