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Definitions

1 Elastic moduls is defined, in the technical literature for
saturated rocks and in the dynamic regime, as the ratio
between the amplitude of the load and the amplitude of the
deformation

2 For the elastic model such a ratio is independent of the
frequency of the load

3 However, for experimental evidence shows a (paradoxical)
dependence of the frequency of both elastic modulus and
attenuation
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The scheme of the experimental evidence

Figure: Elastic modulus and attenuation coefficient
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Consequences

1 The paradox of the dependence of the elastic modulus with
respect to frequency is easily solved.

2 The elastic model is not the correct model to predict the
results of these experiments.

3 The presence of two different dynamics suggests the use of
mixture theory.

4 Static solutions will prove differences of drained, undrained
and constrained-drained elastic moduli.

5 Dynamic solutions will prove dispersive behaviour.
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3D-Kinematics
1D-Kinematics

Classical continuum mechanics

One reference configuration X ∈ Bs

One present configuration x ∈ B
One placement χ such that x = χ (X , t)
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3D-Kinematics
1D-Kinematics

Mechanics of Mixtures

Two reference configurations Xs ∈ Bs and Xf ∈ Bf

One present configuration x ∈ B
Two placements χs and χf such that x = χs (Xs , t) = χf (Xf , t)
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Microstructures of Mixtures

For each point x ∈ B of the present configuration, a RVE is
pretended to be described by the superposition of two points,
Xs ∈ Bs and Xf ∈ Bf , of two different reference configurations
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The choice of the fundamental kinematical fields

The two placements χs (Xs , t) and χf (Xf , t) can not be chosen
because their domains are different:Xs ∈ Bs and Xf ∈ Bf

We define, at any time t, a function φ (Xs , t) that associates to
each solid particle Xs that particular fluid material particle
Xf = φ (Xs , t) occupying the same physical position
x = χs (Xs , t) = χf (Xf , t) as Xs .
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Mass densities and porosity

The apparent mass densities of both species ρs and ρf , in the
reference configuration, are defined by the respective masses Ms

and Mf over the total volume V ,

ρs =
Ms

V
=

Ms

Vs

Vs

V
= ρ̂s

Vs

V
, ρf =

Mf

Vf

Vf

V
= ρ̂f

Vf

V
. (1)

Thus, they are related with the so-called true mass densities
ρ̂s =Ms/Vs and ρ̂f =Mf /Vf through the volume fractions Vs/V
and Vf /V or to the porosityν = Vf /V , that here will be used only
for better characterize the values of the apparent mass densities ρs

and ρf in the reference configuration.
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3D-Kinematics
1D-Kinematics

The 1D case

In order to simplify the equations that follow, we consider the
simple 1D case, i.e.,
.
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Displacement fields

We can define two displacement fields,

us (Xs , t) = χs (Xs , t)−Xs , uf (Xf , t) = χf (Xf , t)−Xf ,

one for the solid, the displacement us , and one for the fluid, the
displacement uf . The displacement relative to the second
kinematical function φ (Xs , t),

Xf = φ (Xs , t) = Xs +ϕ (Xs , t) ,

is therefore the function ϕ (Xs , t) that gives, for each solid particle
Xs , the displacement of the fluid particle Xf that was in contact
with Xs .
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Displacement fields

The relation between the three defined displacement fields is the
following

uf (Xf , t) = x−Xf = Xs +us −Xs −ϕ = us (Xs , t)−ϕ (Xs , t)
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The extended Rayleigh-Hamilton principle

Formulation of the principle

δA=
∫ tf

ti

∂R

∂ q̇i
δqidt, ∀δq/δq (t = ti ) = δq (t = ti ) = 0, (2)

where the kinematical fields q and the action A are defined.

q =
{
us ,ϕ,u

′
s ,ϕ

′
}
, A=

∫ tf

ti

(
K −U+Uext

)
dt.
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The Kinetic energy

Definition of the kinetic energy

K =
∫ L

0

(
1
2

ρs u̇
2
s +

1
2

ρf u̇
2
f +

1
2

ηs u̇
′2
s +

1
2

ηf

(
∂ u̇f
∂Xf

)2
)
dXs , (3)

where superimposed dot and apex mean, respectively, the derivative
with respect to time t and to position Xs .
We remark that the first two terms in (3) are the standard kinetic
energies for the two species of the mixture and give the standard
inertial contributions.
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The Kinetic energy

Definition of the kinetic energy

K =
∫ L

0

(
1
2

ρs u̇
2
s +

1
2

ρf u̇
2
f +

1
2

ηs u̇
′2
s +

1
2

ηf

(
∂ u̇f
∂Xf

)2
)
dXs , (4)

Besides, the last two terms are the so-called micro-inertial terms
and give the contribution of the microstructures to the inertia.
Thus, ηs and ηf are the so-called micro-inertias of the two species.
Notwithstanding it would be possible to add interaction terms for
inertial and micro-inertial contributions, this is avoided.
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The strain energy

The strain energy (i.e., the internal energy functional) is also
defined,

U =
∫ L

0

(
1
2

κsu
′2
s +

1
2

κf

(
∂uf
∂Xf

)2

+κsf u
′
s

∂uf
∂Xf

+
1
2

κsmu
′′2
s +

1
2

κfm

(
∂ 2uf
∂X 2

f

)2
)
dXs ,

(5)
where the axial stiffnesses of the two species κs and κf are
introduced as well as a conservative interaction term (the third of
the previous equation). The parameter κsf is called the
conservative interaction stiffness.
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The strain energy

The strain energy (i.e., the internal energy functional) is also
defined,

U =
∫ L

0

(
1
2

κsu
′2
s +

1
2

κf

(
∂uf
∂Xf

)2

+κsf u
′
s

∂uf
∂Xf

+
1
2

κsmu
′′2
s +

1
2

κfm

(
∂ 2uf
∂X 2

f

)2
)
dXs ,

(6)
Higher order gradient contributions to the internal energy are
represented by the last two terms of (6). κsm and κfm are called the
stiffnesses of the microstructures. Even in this case, it would be
possible to add an interaction term that, for the same sake of
simplicity, is avoided in the present model.
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The external energy functional

In order to take into account the effects of the external word, the
external energy functional Uext is also defined

Uext =
∫ L

0

[
bexts us +bextf uf

]
dXs +

+

[
f exts us + f extf uf +dext

s u
′
s +dext

f

∂uf
∂Xf

]
Xs=0

+

+

[
f exts us + f extf uf +dext

s u
′
s +dext

f

∂uf
∂Xf

]
Xs=L

,

where the integral part is due to distributed forces that are acted by
the external word on the two species, i.e. bexts and bextf . For the
same sake of simplicity, it is avoided the contributions of distributed
external double forces.
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Stress partitiong law

Concentrated forces f exts , f extf and double forces dext
s , dext

f on both
species are possible to be prescribed at the boundaries, in Xs = 0
and/or in Xs = L, in this model in an INDEPENDENT way. It must
be underlined that any prescription on the repartition of a certain
external force f ext on the two species of the mixture,i.e.,

f exts

(
f ext

)
, f extf

(
f ext

)
is a constitutive assumption that should be avoided for the general
case. A remarkable example is the case where kinematical (i.e.,
displacement) and dual (i.e., force) conditions are assumed for the
two species.
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Rayleigh energy functional

The dissipation Rayleigh energy functional is also defined,

R =
∫ L

0

[
1
2
D (u̇s − u̇f )

2+
1
2
Dm

(
u̇
′
s −

∂ u̇f
∂Xf

)2
]
dx , (7)

where D is the standard Darcy viscosity coefficient and Dm is an
higher order Darcy term, due to the Brinkman dissipation.
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Thermodynamic restrictions

Positive definiteness of the kinetic K , internal U and Rayleigh R
energy functionals implies the following thermodynamically
restrictions on the constitutive parameters of this model,

ρα > 0, ηα > 0, κα > 0, καm > 0, (8)

D > 0, Dm > 0, |κsf |< κsκf , α = s, f . (9)
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Technical advices

In order to derive the system of PDEs and boundary conditions,
first of all the kinetic, the strain and the external energies must be
expressed in terms of the two fundamental kinematical fields

us (Xs , t) ,ϕ (Xs , t) . (10)

Then, the variation of the three functional must be calculated and
the principle (2) must be imposed for any kinematical fields (10)
that satisfy that kinematical boundary conditions.
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Partial differential equations

The two partial differential equations are derived

ρf ϕ̈− (ρs +ρf ) üs +F
′
u+
(
bexts +bextf

)
= 0 (11)

+ρf ϕ̈−ρf üs +F
′
ϕ +bextf +Dϕ̇−Dmϕ̇

′′
= 0 (12)

where

Mu = (κsm+κfm)u
′′
s −κfmϕ

′′

Mϕ =−κfmϕ
′′
+κfm

Fu = (κs +κf +2κsf )u
′
s +(−κf −κsf )ϕ

′− (κsm+κfm)u
′′′
s

+κfmϕ
′′′
+(ηs +ηf ) ü

′
s −ηf ϕ̈

′

Fϕ = (κf +κsf )u
′
s −κf ϕ

′
+κfmϕ

′′′−κfmu
′′′
s +

−ηf ϕ̈
′
+ηf ü

′
s −Dmϕ̇

′
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Boundary Conditions

We have the following system of Boundary conditions,

Xs = L +
[
Fu−

(
f exts + f extf

)]
δus (13)

Xs = 0 +
[
Fu+

(
f exts + f extf

)]
δus (14)

Xs = L
[
Fϕ − f extf

]
δϕ (15)

Xs = 0
[
Fϕ + f extf

]
δϕ (16)

Xs = L
[
Mu−

(
dext
s +dext

f

)]
δu

′
s (17)

Xs = 0
[
Mu+

(
dext
s +dext

f

)]
δu

′
s (18)

Xs = L
[
Mϕ −dext

f

]
δϕ

′
(19)

Xs = 0
[
Mϕ +dext

f

]
δϕ

′
(20)
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Boundary conditions for the undrained problem

Assumptions

ηf = κfm = bexts = bextf = 0

Assumed kinematic boundary conditions:

us (Xs = 0) = 0 (21)
ϕ (Xs = 0) = 0 (22)
ϕ (Xs = L) = 0 (23)

Assumed dynamic boundary conditions:

dext
s +dext

f = 0 Xs = 0 (24)
f exts + f extf = F ext Xs = L (25)

dext
s +dext

f = 0 Xs = L (26)
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Solution for the undrained problem

The solution is unique and it is

us (Xs) = F ext Xs

κs +κf +2κsf
, ϕ (x) = 0,

we can deduce the interpretation of the undrained compressibility
Kundr
s = F ext/u

′
s

Kundr
s = κs +κf +2κsf , (27)
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Boundary conditions for the free drained problem

Assumptions

ηf = κfm = bexts = bextf = 0

Assumed kinematic boundary conditions:

us (Xs = 0) = 0 (28)
ϕ (Xs = 0) = 0 (29)

Assumed dynamic boundary conditions:

dext
s +dext

f = 0 Xs = 0 (30)
f exts + f extf = F ext Xs = L (31)

f extf = 0 Xs = L (32)
dext
s +dext

f = 0 Xs = L (33)
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Solution for the free drained problem

The solution is again unique and given by the following expressions
of the displacement fields,

us (Xs) = F extXs
κf

κsκf −κ2
sf

, ϕ (x) = F extXs
κf +κsf

κsκf −κ2
sf

, (34)

where we can deduce another interpretation of the solid
compressibility in the drained condition Kdr

s = F ext/u
′
s ,

Kdr
s =

κsκf −κ2
sf

κf
= κs −

κ2
sf

κf
, (35)

Because of the thermodynamic restrictions we have that

Kundr
s ≥ Kdr

s

that the solid displacement has the same sign of the external force
F ext .
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The hydrophobic and hydrophilic conditions

We have finally that the fluid displacement,

uf = us −ϕ = F extXs
−κsf

κsκf −κ2
sf

has the same sign of the external force F ext , and therefore of the
solid, only if

κsf < 0,

that gives a condition for the hydrophylic behaviour of the mixture.
Besides, the condition

κsf <−κf

would mean a fluid displacement higher than the solid one.
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Boundary conditions for the constrained and drained
problem

Assumed kinematic boundary conditions:

us (Xs = 0) = 0 (36)
ϕ (Xs = 0) = 0 (37)

Assumed dynamic boundary conditions:

dext
s +dext

f = 0 Xs = 0 (38)
f exts + f extf = F ext Xs = L (39)

f extf =−pextf Xs = L (40)
dext
s +dext

f = 0 Xs = L (41)

where pextf is a pressure applied to the fluid.
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Solution for the constrained and drained problem

The solution is again unique and given by the following expressions
of the displacement fields,

us (Xs) = Xs
F extκf +pextf (κf +κsf )

κsκf −κ2
sf

,

ϕ (Xs) = Xs
F ext (κf +κsf )+pextf (κs +κf +2κsf )

κsκf −κ2
sf

,

where we can deduce another interpretation of the solid
compressibility Ks = F/u

′
s ,

Ks =
κsκf −κ2

sf

κf +
pextf
F ext (κf +κsf )

, (42)

that gives the contribution of the fluid pressure on the solid
compressibility.

L. Placidi, J. Fortin, E. Barchiesi Paris 17-18 October 2019



Experimental evidence for saturated rocks
Kinematics of the saturated porous beams
The extended Rayleigh-Hamilton principle

Static solutions
Plane wave solutions

Conclusion

Dispersion relation
Numerical example

Outline

1 Experimental evidence for saturated rocks

2 Kinematics of the saturated porous beams

3 The extended Rayleigh-Hamilton principle

4 Static solutions

5 Plane wave solutions

6 Conclusion

L. Placidi, J. Fortin, E. Barchiesi Paris 17-18 October 2019



Experimental evidence for saturated rocks
Kinematics of the saturated porous beams
The extended Rayleigh-Hamilton principle

Static solutions
Plane wave solutions

Conclusion

Dispersion relation
Numerical example

Plane wave solution

Let us find a solution of the Partial differential equations in the
following plane wave form,

us = Re
{
u0s exp[I (ωt−kXs)]

}
, uf = Re

{
u0f exp[I (ωt−kXs)]

}
,

(43)
where u0s and u0f are the complex wave amplitudes, ω is the
frequency and k is the wave number. By insertion of (43) into the
partial differential equations (11) and (12) we have a system of two
algabraic equations into two unknowns.
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Dispersion relation

The two algebraic equations has a non trivial solution in terms of
the complex amplitudes only if the following dispersion relation is
satisfied,(

ρsω
2−κsk

2−κsmk
4+ηsω

2k2− IDω + IDmωk2
)
·

·
(
ρf ω

2−κf k
2−κfmk

4+ηf ω
2k2− IDω + IDmωk2

)
= (44)

=
(
−κsf k

2+ IDω− IDmωk2
)2 (45)
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Solution of the dispersion relation

The previous dispersion relation (45) can be solved as follows. Let
us assume a real value for the frequency ω . In this case, the
dispersion relation (45) is a polynomial of fourth order in the
squared wave number variable k2, that is possible to solve
analytically. However, the results are very complicated and it is not
possible to make that evident in a slide. Moreover, from such a
complicated form one can not catch any interesting information.
For this reason, it is better to show them in different ways. In the
next slides we will analyze the low and high frequency regime. In
the subsequent slides we plot the dispersion relation (45) in terms
of phase velocity and attenuation coefficients.
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Low frequency regime

Let us find a solution of (45) in the case of wave number and
frequency have the same order of magnitude and in the low
frequency regime. In this case the (45) is evaluated at the lowest
(3rd) order,

ω

k
=

√
κs +κf +2κsf

ρs +ρf
=

√
Kundr
s

ρ
(46)
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Higher frequency regime

The same dispersion relation (45) at the higher (4th) order, in the
limit of

DDm� κf ρs +κsρf

we have that one analytical solution is

ω

k
=

√√√√1
2

(
κs

ρs
+

κf

ρf

)
+

√
4
(

κs

ρs
− κf

ρf

)2

+
κ2
sf

ρsρf
6=

√
Kdr
s

ρ
(47)
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Highest frequency regime

Finally, at the highest (7th) order the (45) is evaluated and solved
as follows,

ω

k
=

√
κsm

ηs
. (48)

We remark that at the highest frequency regime only second
gradient coefficients and microinertia have a role
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Numerical example

Let us call V ph
low the phase velocity in the low frequency

regime,V ph
med the phase velocity in the intermediated plateau of the

phase velocity and V ph
high that in the highest frequency regime.

From (47), (48) and (46) we have

V ph
low =

√
Kundr
s

ρ
, V ph

med =

√√√√1
2

(
κs

ρs
+

κf

ρf

)
+

√
4
(

κs

ρs
− κf

ρf

)2

+
κ2
sf

ρsρf
, V ph

high =

√
κsm

ηs

(49)
V ph
low = 2900 m/s, V ph

med = 3100 m/s,

V ph
high = 4000 m/s,
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Numerical assumptions on the apparent mass densities

We assume to have a sample of cylindrical shape with diameter d
and height L. The porosity of the solid-fluid mixture is ν = 0.1 and
the three dimensional true mass density of the solid species
isρ3D

s = 2700Kg/m3. Thus, the apparent solid species mass density
is,

ρs =
d2

4
πρ

3D
s (1−ν) = 0.763 Kg/m.

The three dimensional true mass density of the fluid species
isρ3D

f = 1000Kg/m3. Thus, the apparent fluid species mass density
is,

ρf =
d2

4
πρ

3D
f ν = 0.031 Kg/m.
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Numerical assumptions

Let us assume a 3D static solid compressibility K 3D
s = 20GPa.

Thus, if we have Ks = K 3D
s πd2/4= 6.28MN and the identification

in the form (35), we have the following identification from (35) and
from the first two of (49),

κs = 7.09MN, κf = 70.9kN, κsf =−238kN.

In the highest frequency regime we can also set the following couple
of values,

ηs = 1Kgm, κsm = 16MNm2 = 16Kgm3 s−2.

The Darcy coefficient D and the higher order Darcy coefficient Dm

are identified a posteriori with the two picks in the attenuation
figure, the second of Fig. ?? and set as follows,

D = 1Kg/m, Dm = 200Kgm.
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Plots of the dispersion relation

We have already pointed out that the frequency ω is real. In this
hypothesis the phase velocity Vph and the attenuation coefficient
Q−1 are defined as follows,

Vph = Re
(

ω

k

)
= ωRe

(
1
k

)
, Q−1 = 2

Im (k)

Re (k)
,

and plotted as follows.

L. Placidi, J. Fortin, E. Barchiesi Paris 17-18 October 2019



Experimental evidence for saturated rocks
Kinematics of the saturated porous beams
The extended Rayleigh-Hamilton principle

Static solutions
Plane wave solutions

Conclusion

Dispersion relation
Numerical example

Plot of the phase velocity

Figure: Phase velocity
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Plot of the attenuation coefficient

Figure: Attenuation coefficient
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1. A 1D model for a saturated solid-fluid mixture is derived with the
inclusion of higher order terms and through a variational procedure.
2. The model is conceived to get a well-posed system of PDEs and
BCs that are able to take into account the transitions from drained,
undrained an unrelaxed regimes.
3. Static analytical solutions are obtained. We derive differences of
the elastic moduli for the drained, undrained and
constrained-drained cases
4. Dynamic solutions are obtained in terms of plane waves.
5. In particular the dispersion relation of the mixture is achieved.
6. The diagrams of velocity and of the attenuation are shown
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7. The first transition (at lower frequencies) is obtained because of
the conceived two dynamics of the mixture.
8. The second transition (at higher frequencies) is obtained
because of the inclusion of higher order term.
9. Nevertheless the simplicity of the model, they agree well with
the experimental evidence.
Thank You For Your Attention
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